Microarray background correction: maximum likelihood estimation for the normal–exponential convolution

نویسندگان

  • Jeremy D. Silver
  • Matthew E. Ritchie
  • Gordon K. Smyth
چکیده

Background correction is an important preprocessing step for microarray data that attempts to adjust the data for the ambient intensity surrounding each feature. The "normexp" method models the observed pixel intensities as the sum of 2 random variables, one normally distributed and the other exponentially distributed, representing background noise and signal, respectively. Using a saddle-point approximation, Ritchie and others (2007) found normexp to be the best background correction method for 2-color microarray data. This article develops the normexp method further by improving the estimation of the parameters. A complete mathematical development is given of the normexp model and the associated saddle-point approximation. Some subtle numerical programming issues are solved which caused the original normexp method to fail occasionally when applied to unusual data sets. A practical and reliable algorithm is developed for exact maximum likelihood estimation (MLE) using high-quality optimization software and using the saddle-point estimates as starting values. "MLE" is shown to outperform heuristic estimators proposed by other authors, both in terms of estimation accuracy and in terms of performance on real data. The saddle-point approximation is an adequate replacement in most practical situations. The performance of normexp for assessing differential expression is improved by adding a small offset to the corrected intensities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Improving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach

A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...

متن کامل

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

Parameter estimation for the exponential-normal convolution model for background correction of affymetrix GeneChip data.

There are many methods of correcting microarray data for non-biological sources of error. Authors routinely supply software or code so that interested analysts can implement their methods. Even with a thorough reading of associated references, it is not always clear how requisite parts of the method are calculated in the software packages. However, it is important to have an understanding of su...

متن کامل

Statistical methods of background correction for Illumina BeadArray data

MOTIVATION Advances in technology have made different microarray platforms available. Among the many, Illumina BeadArrays are relatively new and have captured significant market share. With BeadArray technology, high data quality is generated from low sample input at reduced cost. However, the analysis methods for Illumina BeadArrays are far behind those for Affymetrix oligonucleotide arrays, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biostatistics (Oxford, England)

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2009